Հանրահաշիվ 9

Առաջադրանքներ կրկնության համար

1) Գտնել 5 հայտարարով բոլոր կանոնավոր կոտորակների գումարը։
1/5+2/5+3/5+4/5=10/5=2
2) Գտնել 4 հայտարարով բոլոր կանոնավոր կոտորակների գումարը։

1/4+2/4+3/4=6/4=3/2=1,5
3) Գտնել 6 հայտարարով բոլոր կանոնավոր կոտորակների գումարը։

1/6+2/6+3/6+4/6+5/6=15/6=2,5
4) 70-ը բաժանել 2:3 հարաբերությամբ։

70/5=14
14*2=28
14*3=42
5) 60-ը բաժանել 1:4 հարաբերությամբ։

60/5=12
12*1=12
12*4=48
6) 49-ը բաժանել 2:5 հարաբերությամբ։

49/7=7
7*2=14
7*5=35
7) Հաշվել արտահայտության արժեքը․

5/3-7/2-13/6=-24/6=-4

10/3-3/2-7/6=0/6=0

10/3-3/2-7/6=0/6=0

125/12+85/13-113/12=1176/156=98/13

8) |-4| : |-2| + |-6| * 2 = 2+12=14
9) 6 : |-3| — 2 : |-2| + 1 =
2-1+1=2
10) |-2| + |3| — |-4+1| =
5-5=0
11) Որդին տասը տարեկան է։ Հինգ տարի առաջ նա 7 անգամ փոքր էր հորից։
ա) Քանի՞ տարեկան է հայրը։

10-5=5
5*7=35
35+5=40
բ) Քանի՞ տարի հետո հայրը որդուց մեծ կլինի 2 անգամ։

20 տարի հետո
12) Որդին ութ տարեկան է։ Երկու տարի առաջ նա 5 անգամ փոքր էր հորից։
ա) Քանի՞ տարեկան է հայրը։

32
բ) Քանի՞ տարի հետո հայրը որդուց մեծ կլինի 3 անգամ։

4 տարի հետո

Հանրահաշիվ 9

A*f(x) ֆունկցիայի գրաֆիկը 

Առաջադրանքներ․

1) Տրված f(x) ֆունկցիայի զրոները 3-ն ու 8-ն են: Գտե՛ք ֆունկցիայի զրոները:
ա) −10f(x)

(3;8)
բ) — 4f(x + 1)

(2;7)
գ) -2/3 f(x – 4)

(7;12)

2) Տրված f(x) ֆունկցիան y-ների առանցքի երկայնքով ձգեցին 1.5 անգամ և իջեցրին 5 միավորով ներքև: Ո՞ր ֆունկցիայի գրաֆիկը ստացվեց:

1,5*f(x)-5

3) Տրված է f(x) ֆունկցիան, որի արժեքների տիրույթը [0, 9] միջակայքն է։ Գտե՛ք ֆունկցիայի արժեքների տիրույթը:
ա) 4f(x)

9*4=36
[0;36]
բ)5/6f(x)

0,83*9=7,4
[0;7,4]

4) Տրված է f(x) ֆունկցիայի գրաֆիկը: Պատկերե՛ք 3f(x) ֆունկցիայի գրաֆիկը.

5) Տրված է f(x) ֆունկցիայի գրաֆիկը: Պատկերե՛ք — f(x) ֆունկցիայի գրաֆիկը:

6) Գտնել 3/4 և 5/8 թվերի գումարի հակադարձ թիվը։
8/11
7) Գտնել 2/3 և 3/4 թվերի գումարի հակադարձ թիվը։

12/17
8) Գտնել 4/5 և 1/4 թվերի գումարի հակադարձ թիվը։

20/21
9) 10, 11, 12, 14 թվերից ո՞րն է 6 թվի հետ փոխադարձաբար պարզ։

11
10) 13, 14, 15, 16 թվերից ո՞րն է 12 թվի հետ փոխադարձաբար պարզ։

13
11) 16, 18, 19, 24 թվերից ո՞րն է 30 թվի հետ փոխադարձաբար պարզ։

18

Հանրահաշիվ 9

ՖՈՒՆԿՑԻԱՅԻ ԳՐԱՖԻԿԻ ՏԵՂԱՇԱՐԺԵՐԸ

Առաջադրանքներ․
1) y=f(x−166) ֆունկցիայի գրաֆիկը կառուցելու համար պետք է y=f(x) ֆունկցիայի գրաֆիկը տեղաշարժել 166 միավորով դեպի՝ 
1. վերև
2. ձախ
3. աջ
4. ներքև
2) Ո՞ր ֆունկցիայի գրաֆիկը կստացվի, եթե y = 6x17 ֆունկցիայի գրաֆիկը Ox առանցքի ուղղությամբ տեղաշարժել 16 միավորով դեպի ձախ:
3) Ո՞ր ֆունկցիայի գրաֆիկը կստացվի, եթե  y=10x3 ֆունկցիայի գրաֆիկը Oy առանցքի ուղղությամբ 8 միավորով տեղաշարժվի դեպի վերև:
4) Նկարում պատկերված է f(x) ֆունկցիայի գրաֆիկը։ Գծե՛ք f(x — a) ֆունկցիայի գրաֆիկը.
ա)a = 3
բ)a = 2
գ)a = — 1
դ)a = 3
ե)a = — 2
զ)a = 4
է)a = -3
ը)a = -2

5) Նկարում պատկերված է f(x — 2) ֆունկցիայի գրաֆիկը: Գծե՛ք f(x) ֆունկցիայի գրաֆիկը.

6) Գտնել A ∩ B բազմությունը, եթե A = {0; 3; 4; 6}, B = {3; 6; 9}։
A ∩ B = {3, 6}
7) Գտնել A ∩ B բազմությունը, եթե A = {1; 3; 6; 9}, B = {5; 6; 8}։

A ∩ B = {6}
8) Գտնել A U B բազմությունը, եթե A = {0; 1; 2; 4}, B = {1; 2; 5}։

A U B = {0, 1, 2, 4, 5}
9) Գտնել A U B բազմությունը, եթե A = {0; 3; 6; 9}, B = {0; 3; 8}։

A U B = {0, 3, 6, 8, 9}
10) Գտնել A U B բազմությունը, եթե A = {7}, B = {4; 6}։

A U B = {4, 6, 7}

Հանրահաշիվ 9

Առաջադրանքներ կրկնության համար

1) Նկարում պատկերված է f(x) + 3 ֆունկցիայի գրաֆիկը: Պատկերե՛ք f(x) — 3 ֆունկցիայի գրաֆիկը:

2) Գտնել 16-ի 3/4 մասը։
12
3) Գտնել 20-ի 4/5 մասը։

16
4) Գտի՛ր թիվը, եթե նրա 2/5 մասը 24 է։

60
5) Գտի՛ր թիվը, եթե նրա 4/5 մասը 32 է։

40
6) 0, 1, 2, 3 թվերից ո՞րը պետք է աջից կցագրենք 422 թվին, որպեսզի ստացված քառանիշ թիվը բաժանվի 3-ի։

1
7) 0, 1, 5, 6 թվերից ո՞րը պետք է աջից կցագրենք 329 թվին, որպեսզի ստացված քառանիշ թիվը բաժանվի 3-ի։

1
8) 1, 2, 5, 8 թվերից ո՞րը պետք է աջից կցագրենք 203 թվին, որպեսզի ստացված քառանիշ թիվը բաժանվի 3-ի։

1
9) Երեք հաջորդական բնական թվերի գումարը 42 է։ Ո՞րն է այդ թվերից փոքրը։

13
10) Երեք հաջորդական բնական թվերի գումարը 21 է։ Ո՞րն է այդ թվերից փոքրը։

6
11) Երեք հաջորդական բնական թվերի գումարը 96 է։ Ո՞րն է այդ թվերից փոքրը։

31
12) Գտնել 432 թվի թվանշանների միջին թվաբանականը։

3
13) Գտնել 675 թվի թվանշանների միջին թվաբանականը։

6
14) Գտնել 150 թվի թվանշանների միջին թվաբանականը։

2

Հանրահաշիվ 9

ՖՈՒՆԿՑԻԱՅԻ ԳՐԱՖԻԿԻ ՏԵՂԱՇԱՐԺԵՐԸ

Առաջադրանքներ․

1) Դիցուք, f(x) ֆունկցիայի գրաֆիկը տեղաշարժեցին 5 միավորով վերև, այնուհետև՝ 7 միավորով ներքև։ Ո՞ր ֆունկցիայի գրաֆիկը ստացվեց։

f(x)=-2

2) Դիցուք, f(x) ֆունկցիայի գրաֆիկը տեղաշարժեցին − 2 միավորով ա) վերև, բ) ներքև։ Ո՞ր ֆունկցիայի գրաֆիկը ստացվեց։

ա) f(x)=-2
բ) f(x)=2

3) Հայտնի է, որ f(x) ֆունկցիայի արժեքների տիրույթը [0, ∞) միջակայքն է: Գտե՛ք g(x) = f(x) + 3 ֆունկցիայի արժեքների տիրույթը:

[3;)

4) Դիցուք f(x) ֆունկցիայի արժեքների տիրույթը [−4, −1] միջակայքն է։ Գտե՛ք.
ա) g(x) = f(x) − 2.5

[-6,5;-3,5]
բ) g(x) = f(x) + 2 ֆունկցիայի արժեքների տիրույթը

[-2;1]

5) Նկարում պատկերված է ֆունկցիայի գրաֆիկը։ Պատկերե՛ք f(x) + 1 և f(x) — 3 ֆունկցիաների գրաֆիկները:

ա)

բ)

գ)

դ)

6) Նկարում պատկերված է f(x) ֆունկցիայի գրաֆիկը: Պատկերե՛ք f(x) + 2 և f(x) — 4 ֆունկցիաների գրաֆիկները:
ա)

բ)

գ)

դ)

7) Գտնել 48-ի 20%-ը։
48*20/100=9,6
8) Գտնել 36-ի 25%-ը։

36*25/100=9
9) Գտնել այն թիվը, որի 20%-ը հավասար է 12-ի։

100*12/20=60
10) Գտնել այն թիվը, որի 25%-ը հավասար է 15-ի։

100*15/25=60

Հանրահաշիվ 9

ՖՈՒՆԿՑԻԱՅԻ ՄՈՆՈՏՈՆՈՒԹՅԱՆ ԵՎ ՆՇԱՆԱՊԱՀՊԱՆՄԱՆ ՄԻՋԱԿԱՅՔԵՐԸ, ՄԵԾԱԳՈՒՅՆ ԵՎ ՓՈՔՐԱԳՈՒՅՆ ԱՐԺԵՔՆԵՐԸ

1) Գտե՛ք ֆունկցիայի մեծագույն և փոքրագույն արժեքները: Ո՞ր կետերում է ընդունում այդ արժեքը։

ա) Մեծագույն՝ 6 (-3), փոքրագույն՝ -7 (10)
բ) Մեծագույն՝ 6 (-9;7) , փոքրագույն՝ -8 (0)
գ) Մեծագույն՝ 2 (0), փոքրագույն՝ -6 (8)
դ) Մեծագույն՝ 6 (6), փոքրագույն՝ -4 (-8)
ե) Մեծագույն՝ 4 (-2;10), փոքրագույն՝ -4 (2)
զ) Մեծագույն՝ 2 (-7;7), փոքրագույն՝ -5 (0)
է) Մեծագույն՝ 10 (7), փոքրագույն՝ -1 (-1)
ը) Մեծագույն՝ 4 (4), փոքրագույն՝ -4 (-8;0;8)

2) Տրված f(x) ֆունկցիայի որոշման տիրույթն է D = [- 5, 5] Հայտնի է, որ f(- 3) = 4 և f(1) = 2 Կարո՞ղ է f(x) ֆունկցիան լինել
ա) աճող՝ ոչ
բ) նվազող՝
այո

3) f(x) ֆունկցիայի որոշման տիրույթը (−∞, +∞) միջակայքն է։ Ֆունկցիայի մասին հայտնի է, որ f(0) = 8, f(5) = 8 և f(- 1) = — 2 Կարո՞ղ է արդյոք f(x) ֆունկցիան լինել
ա) նվազող՝ ոչ
բ) չնվազող՝
այո

4) Տրված f(x) ֆունկցիայի համար հայտնի է, որ այն աճող է [1, 6] միջակայքում և f(1) = 5 f(6) = 11 : Հնարավո՞ր է արդյոք, որ
ա) f(4) = 10՝ այո
բ) f(4) = 14՝ ոչ
գ) f(4) = 5՝ ոչ

5) Տրված f(x) ֆունկցիան չաճող է [0, +∞) միջակայքում։ Հայտնի է, որ f(0) = f(10) = 5
ա) Գտե՛ք f(3)-ը՝ f(3)=5
բ) Հնարավո՞ր է, որ f(11) = 5.1՝
այո

6) Գտնել 10 և 13 թվերից մեծի և փոքրի տարբերության հակադիր թիվը։
-3
7) Գտնել -4 և 20 թվերից մեծի և փոքրի տարբերության հակադիր թիվը։

-16
8) Գտնել -3 և 7 թվերի գումարի հակադիր թիվը։

-4
9) Գտնել -20 և -5 թվերի արտադրյալի հակադիր թիվը։

-100

Հանրահաշիվ 9

ՖՈՒՆԿՑԻԱՅԻ ՄՈՆՈՏՈՆՈՒԹՅԱՆ ԵՎ ՆՇԱՆԱՊԱՀՊԱՆՄԱՆ ՄԻՋԱԿԱՅՔԵՐԸ, ՄԵԾԱԳՈՒՅՆ ԵՎ ՓՈՔՐԱԳՈՒՅՆ ԱՐԺԵՔՆԵՐԸ

Առաջադրանքներ․
1) Գտե՛ք ֆունկցիայի մոնոտոնության միջակայքերը․

ա) [-10;-3], [-3;-1] [-1;5], [5;10]
բ) [-9;-7], [-7;-6], [-6;0], [0;7]
գ) [0;8]
դ) [-8;-4], [-4;6]
ե) [-10;-2], [-2;2], [2;10]
զ) [-9;-7], [-7;0], [0;7], [7;9]
ե) [-8;-1], [-1;2], [2;4], [4;7]
ը) [-8;-4], [-4;0], [0;4], [4;8]

2) Գտե՛ք ֆունկցիայի մոնոտոնության միջակայքերը․

ա) [-8;0], [0;4]
բ) [-5;-2], [-2;2]
գ) [-6;0], [0;3], [3;6]
դ) [-6;-1], [-1;4], [4;7]
ե) [-7;-3], [-3;0], [0;3], [3;7]
զ) [-8;-4], [-4;0], [0;4], [4;8]
է) [-8;-4], [4;8]
ը) [-6;-2], [-2;0], [0;2], [2;6]

3) Մոնոտո՞ն է առ․ 2-ում ներկայացված ֆունկցիան: Եթե այո, ապա նշե՛ք մոնոտոնության բնույթը․

4) Մոնոտո՞ն է արդյոք ֆունկցիան: Եթե այո, ապա որոշե՛ք մոնոտոնության բնույթը.

ա) Նվազող
բ) Չնվազող
գ) Նվազող
դ) Աճող
ե) Աճող
զ) Չնվազող
է) Աճող
ը) Չաճող

5) Գտնել 5 թվի և նրա հակադիր թվի գումարը։
5+(-5)=0
6) Գտնել -8 թվի և նրա հակադիր թվի տարբերությունը։

-8-8=-16
7) Գտնել 3 թվի և նրա հակադիր թվի արտադրյալը։

3*(-3)=-9
8) Գտնել 12 թվի և նրա հակադիր թվի քանորդը։

12/-12=-1
9) Գտնել -14 թվի և նրա հակադիր թվի քանորդը։

14/-14=-1

Հանրահաշիվ 9

ՖՈՒՆԿՑԻԱՅԻ ՈՐՈՇՄԱՆ ԵՎ ԱՐԺԵՔՆԵՐԻ ՏԻՐՈՒՅԹՆԵՐԸ. ՖՈՒՆԿՑԻԱՅԻ ԳՐԱՖԻԿԻ ԸՆԹԵՐՑՈՒՄԸ

Առաջադրանքներ․
1) Գտե՛ք տրված գրաֆիկով ֆունկցիայի որոշման տիրույթը։

ա) D=(-8;6)
բ) D=(-5;7)
գ) D=(-6;6)
դ) D=(-6;7)
ե) D=(-7;6)
զ) D=(-8;8)
է) D=(-8;8)
ը) D=(-6;6)

2) Պարզե՛ք, թե որ կետերում է ֆունկցիան ընդունում A արժեքը.
ա) A = 3 (նկար բ)

x=-1
բ) A = 10 (նկար գ)

Չկա
գ) A = 5 (նկար ե)

x=-3 և 3
դ) A = -3 (նկար ե)

x=-1 և 1
ե) A = 0 (նկար է)

x=-4 և 4
զ) A = -3 (նկար ը)

Չկա

3) Գտե՛ք առաջադրանք 1-ում տրված գրաֆիկով նկարագրվող ֆունկցիայի արժեքների տիրույթը։

ա) E=(-6;6)
բ) E=(1;9)
գ) E=(-3;9)
դ) E=(-6;4)
ե) E=(-6;7)
զ) E=(-8;8)
է) E=(-4;4)
ը) E=(-1;5)

4) Օրվա ընթացքում գրանցեցին ջերմաչափի ցուցմունքները։ Հետևյալ գրաֆիկը նկարագրում է ջերմաչափի ցուցմունքները։

ա) Օրվա ո՞ր ընթացքի ցուցմունքներն են գրանցված։
Ժամը 14։00-ից մինչև 18։00
բ) Գտե՛ք ֆունկցիայի արժեքների տիրույթը։

E=(20;26)
գ) Ի՞նչն է ցույց տալիս ֆունկցիայի որոշման տիրույթը։

Ֆունկցիայի որոշման տիրույթը ցույց է տալիս, թե որ արժեքների համար է հնարավոր հաշվարկել ֆունկցիայի արժեքը։
դ) Օրվա ո՞ր ժամերին է ջերմաստիճանի ցուցմունքը եղել 21° C:

Ժամը 14։00-ի և 15։00 միջև

5) Գտե՛ք առաջադրանք 1-ում տրված գրաֆիկով նկարագրվող ֆունկցիայի զրոները։

6) Քանի՞ պարզ թիվ կա (7; 19] միջակայքում։

11, 13, 17, 19
7) Քանի՞ պարզ թիվ կա [17; 29] միջակայքում։

17, 19, 23, 29
8) Քանի՞ պարզ թիվ կա (0; 19) միջակայքում։

2, 3, 5, 7, 11, 13, 17
9) Քանի՞ պարզ թիվ կա (56; 71] միջակայքում։

59, 61, 67, 71

Հանրահաշիվ 9

ՖՈՒՆԿՑԻԱՅԻ ԳՐԱՖԻԿՆ ՈՒ ՆՇԱՆԱՊԱՀՊԱՆՄԱՆ ՄԻՋԱԿԱՅՔԵՐԸ

1) Գծե՛ք ֆունկցիայի գրաֆիկ, որն ունի հետևյալ նշանապահպանման միջակայքերը․
ա) (- ∞, 1) -ում՝ դրական, (1, 2)-ում՝ բացասական, (2, ∞) -ում՝ դրական

բ) (- ∞, — 2) -ում՝ դրական, (−2, 0)-ում՝ դրական, (0, 5)-ում՝ բացասական, (5, +∞) -ում՝ դրական

գ) (- ∞, -√8)-ում՝ բացասական, (- √8, √7) -ում՝ դրական, (√7, +∞) -ում՝ բացասական


2) Ո՞ր գրաֆիկով ֆունկցիայի նշանապահպանման միջակայքերն են.
ա) (- ∞, — 3) (0, 4)-ում՝ դրական, (–3, 0), (4, +0)-ում՝ բացասական

Երկրորդ գրաֆիկ
բ) (- ∞, — 1) , (-1, 2)-ում՝ բացասական, (2, +0)-ում՝ դրական
Երրորդ գրաֆիկ
գ) (- ∞, — 2) (-1, 1)-ում՝ բացասական, (−2, −1), (1, +0)-ում՝ դրական

Առաջին գրաֆիկ

3) Գծե՛ք ֆունկցիայի գրաֆիկ, որը բավարարում է հետևյալ երկու պայմաններին․
1) անցնում է կոորդինատային հարթության (2, 3) կետով

2) (–∞, 0)-ում դրական է, (0, 1)-ում՝ բացասական, (1, +∞)-ում՝ դրական


4) Գծե՛ք ֆունկցիայի գրաֆիկ, որը բավարարում է հետևյալ երկու պայմաններին.
1) անցնում է կոորդինատային հարթության (−2, 1), (0, −1) և (3, −1) կետերով

2) նշանապահպանման միջակայքերն են՝ (-∞, -1), (-1, 1) և (1, +∞)


5) Գծե՛ք ֆունկցիայի գրաֆիկ, որը բավարարում է հետևյալ երկու պայմաններին․
1) նշանապահպանման միջակայքերն են՝ (-∞, — 2) ,(-2, 1) և (1, +∞)

2) անցնում է կոորդինատային հարթության (–5, 1), (-1, -2), (2, −2) կետերով


6) Գտնել բաժանելին, եթե բաժանարարը 9 է, քանորդը՝ 7, իսկ մնացորդը՝ 5:

(9*7)+5=68
7) Գտնել բաժանելին, եթե բաժանարարը 7 է, քանորդը՝ 5, իսկ մնացորդը՝ 3:

(7*5)+3=38
8) Գտնել բաժանելին, եթե բաժանարարը 9 է, քանորդը՝ 8, իսկ մնացորդը՝ 6:

(9*8)+6=78
9) Գտնել բաժանելին, եթե բաժանարարը 6 է, քանորդը՝ 4, իսկ մնացորդը՝ 1:

(6*4)+1=25

Հանրահաշիվ 9

ՖՈՒՆԿՑԻԱՅԻ ԳՐԱՖԻԿՆ ՈՒ ՆՇԱՆԱՊԱՀՊԱՆՄԱՆ ՄԻՋԱԿԱՅՔԵՐԸ

Առաջադրանքներ․
1) Գտե՛ք պատկերված գրաֆիկով ֆունկցիայի նշանապահպանման միջակայքերը․

ա) (-∞;-1) +, (-1;3) -, (3;∞) +
բ) (-∞;-1) -, (-1;1) +, (1;∞) +
գ) (-∞;-2) +, (-2;0) +, (0;-2) -, (-2;∞) +
դ) (-∞;-2) -, (-2;2) +, (2;3) -, (3;∞) +
ե) (-∞;-3) +, (-3;2) -, (2;∞) +
զ) (-∞;-2) -, (-2;0,5) +, (0,5;∞) +

2) Գծե՛ք ֆունկցիայի գրաֆիկ, որի նշանապահպանման միջակայքերը կլինեն․
ա) (−∞, −2), (−2, 1), (1, +∞)

բ) (−∞; −  4/5), (−  4/5; 0), (0; 3), (3; +∞)

գ) (−∞; 3), (3; +∞)

դ) (−∞, +∞)


3) Գծե՛ք ֆունկցիայի գրաֆիկ, որի նշանապահպանման միջակայքերի գծապատկերը կունենա հետևյալ տեսքը․

4) Ճարտարապետ Ռաֆայելը տարվա ընթացքում նախագծեց 25 առանձնատուն՝ 10 փոքր ու 15 մեծ։ Փոքր առանձնատներից յուրաքանչյուրի համար նա վաստակում է 240 000 դրամ, իսկ մեծի համար՝ 450 000։
ա) Մեկ պատվերից միջինում որքա՞ն գումար է աշխատում Ռաֆայելը։
բ) Շինարարության ընթացքում Ռաֆայելը փոքր առանձնատուն այցելում է 7 անգամ, իսկ մեծ առանձնատուն՝ 12։ Յուրաքանչյուր այցելության ժամանակ նա ծախսում է միջինում 1500 դրամի մեքենայի վառելիք։ Տարվա ընթացքում որքա՞ն շահույթ ստացավ Ռաֆայելը։
5) Գտնել (-5; 36) միջակայքին պատկանող բոլոր ամբողջ թվերի քանակը։

39
6) Գտնել (34; 78) միջակայքին պատկանող բոլոր ամբողջ թվերի քանակը։

110
7) Գտնել (23; 57] միջակայքին պատկանող բոլոր ամբողջ թվերի քանակը։

79
8) Գտնել [-3; 45) միջակայքին պատկանող բոլոր ամբողջ թվերի քանակը։

47
9) Գտնել [23; 123] միջակայքին պատկանող բոլոր ամբողջ թվերի քանակը։

146