5-րդ դասարան·մաթեմատիկա

Հունիսյան ֆլեշմոբի խնդիրներ

1․Ճամբարականները որոշեցին ժամացույցի թվատախտակը երկու գծով բաժանել երեք մասի այնպես, որ յուրաքանչյուր մասում եղած չորս թվերի գումարները հավասար լինեն: Որո՞նք են ստացված քառյակները, եթե երկնիշ թվերի թվանշանները իրարից բաժանել չի կարելի:
Լուծում՝ 1) 1+2+3+4+5+6+7+8+9+10+11+12=78
2)78:3=26

2․ Արեգը, Դավիթը և Անին ապրում են նույն շենքում։ Դավիթն ապրում է 2 հարկ բարձր, քան Արեգը, բայց 4 հարկ ցածր, քան Անին։ Ով ո՞ր հարկում է ապրում, եթե Արեգն ապրում է այդ շենքի 3֊րդ հարկում։

3-րդ հարկ՝ Արեգ
5-րդ հարկ՝ Դավիթ
9-րդ հարկ՝ Անի

3. Եթե պապիկը ապրի իր ապրած տարիների կեսը և ևս 1 տարի, ապա կլինի 100 տարեկան։ Քանի՞ տարեկան է պապիկը։

Լուծում՝ 1)100-1=99
2)99:3=33
3)33×2=66

4․ Շենքի յուրաքանչյուր հարկի բարձրությունը 4մ է։ Այդ շենքի 5֊րդ հարկի հատակին փռված գորգը գետնից ի՞նչ բարձրության վրա է գտնվում։

Լուծում՝ 4×4=16մ

5․Առավոտյան տողանին 25 ճամբարականներ շարվել էին մեկ շարքով: Յուրաքանչյուր տղայի երկու անմիջական հարևանները աղջիկներ էին: Աղջիկներից ոչ մեկը աղջիկ անմիջական հարևան չուներ: Քանի՞ աղջիկ կար շարքում:

12 տղա
13 աղջիկ

6․Հասարակածի երկարությունը մոտավորապես 40000կմ է: Հաշվի՛ր, թե քանի՞ անգամ պետք է Նոյեմբերյանից Երևան գնաս, որ այդքան ճանապարհ անցնես, եթե Երևանից Նոյեմբերյան 200կմ է:

40000։200=200 (անգամ)

7․Գտի՛ր նշված հաջորդականության 5-րդ և 6-րդ անդամների գումարը:
3, 8, 18, 38, …

3,8,18,38,78,158
158+78=236

8) 89057 թվից ջնջեք երեք թվանշան այնպես, որ ստացված թիվը լինի հնարավորինս մեծ:

97

9. Քանի՞ երկնիշ թիվ կա, որի տասնավորի և միավորի գումարը հավասար է ամենափոքր պարզ թվի և ամենափոքր բաղադրյալ թվի գումարին:

11=1+10

10. Հունիսյան ճամբարի ընթացքում Արևմտյան դպրոցի ճամբարականները կազմակերպեցին ցատկապարկերով վազքի մրցույթ: Արեգը, Դավիթը և Ալենը գրավեցին առաջին երեք տեղերը: Արեգ գրավեց 2-րդ, Ալենը հասավ վերջնագծին Դավթից առաջ: Տղաներից ով ո՞ր տեղը գրավեց:
Ալեն-1-ին տեղ
Արեգ-2-րդ տեղ
Դավիթ-3-րդ տեղ

Оставьте комментарий